Disparity to Ordered Point Cloud Converter
Convert TIFF disparity images to ordered point clouds.
Installation
pip install -e examples/python/disparity_to_ordered_point_cloud
Usage
cd examples/python/disparity_to_ordered_point_cloud/disparity_to_ordered_point_cloud
python3 disparity_to_ordered_point_cloud.py <disparity_dir> <details_dir> <output_dir> [--split]
Parameters
disparity_dir
: Path to directory containing TIFF disparity imagesdetails_dir
: Path to directory containing YAML details filesoutput_dir
: Directory where ordered point clouds will be saved--split
: Optional flag to save XYZ dimensions as separate text files
Examples
# Generate 3-channel TIFF point clouds (default)
python3 disparity_to_ordered_point_cloud.py /path/to/disparity /path/to/details /path/to/output
# Generate separate text files for each XYZ dimension
python3 disparity_to_ordered_point_cloud.py /path/to/disparity /path/to/details /path/to/output --split
Output
- Format: 3-channel TIFF files (default) or separate text files (with --split)
- Location: Specified output directory
- Naming: Maintains original disparity image naming convention
Features
- Convert TIFF disparity images to ordered point clouds
- Support for both unified and split output formats
- Preserves spatial ordering of 3D points
- Compatible with various 3D visualization tools
Output Formats
Default (3-channel TIFF)
- Single TIFF file per disparity image
- Three channels representing X, Y, Z coordinates
- Maintains pixel-to-point correspondence
Split Format (--split option)
- Three separate text files per disparity image
- Individual files for X, Y, Z dimensions
- Human-readable format for analysis
Requirements
- TIFF disparity images from depth_to_disparity converter
- YAML details files from Hammerhead data collection
- Sufficient storage space for point cloud data
Troubleshooting
- Missing details files: Ensure details directory contains corresponding YAML files
- File overwrite warning: Existing files in output directory will be overwritten
- Large output files: Point clouds can be very large - ensure adequate storage
- Memory issues: Processing large disparity images may require significant RAM
Press Ctrl+C
to stop conversion.